THE SCIENCE OF EARTHQUAKES.
What is an earthquake?
An earthquake is what happens when two blocks of the earth suddenly
slip past one another. The surface where they slip is called the
fault or fault plane. The location below the earth’s
surface where the earthquake starts is called the hypocenter, and
the location directly above it on the surface of the earth is called the
epicenter.
Sometimes an earthquake has foreshocks. These are smaller earthquakes that happen in the same place as the larger earthquake that follows. Scientists can’t tell that an earthquake is a foreshock until the larger earthquake happens. The largest, main earthquake is called the mainshock. Mainshocks always have aftershocks that follow. These are smaller earthquakes that occur afterwards in the same place as the mainshock. Depending on the size of the mainshock, aftershocks can continue for weeks, months, and even years after the mainshock!
What causes earthquakes and where do they happen?
The earth has four major layers: the inner core, outer core, mantle
and crust. (figure 2) The crust and the top of the mantle make up a
thin skin on the surface of our planet. But this skin is not all in one piece
– it is made up of many pieces like a puzzle covering the surface of
the earth. (figure 3) Not only that, but these puzzle pieces keep slowly
moving around, sliding past one another and bumping into each other. We call
these puzzle pieces tectonic plates, and the edges of the plates are
called the plate boundaries. The plate boundaries are made up of
many faults, and most of the earthquakes around the world occur on these
faults. Since the edges of the plates are rough, they get stuck while the
rest of the plate keeps moving. Finally, when the plate has moved far enough,
the edges unstick on one of the faults and there is an earthquake.
Why does the earth shake when there is an earthquake?
While the edges of faults are stuck together, and the rest of the block is
moving, the energy that would normally cause the blocks to slide past one
another is being stored up. When the force of the moving blocks finally
overcomes the friction of the jagged edges of the fault and it
unsticks, all that stored up energy is released. The energy radiates outward
from the fault in all directions in the form of seismic waves like
ripples on a pond. The seismic waves shake the earth as they move through it,
and when the waves reach the earth’s surface, they shake the ground and
anything on it, like our houses and us! (see P&S Wave inset)
How are earthquakes recorded?
Earthquakes are recorded by instruments called seismographs. The
recording they make is called a seismogram. (figure 4) The
seismograph has a base that sets firmly in the ground, and a heavy weight
that hangs free. When an earthquake causes the ground to shake, the base of
the seismograph shakes too, but the hanging weight does not. Instead the
spring or string that it is hanging from absorbs all the movement. The
difference in position between the shaking part of the seismograph and the
motionless part is what is recorded.
How do scientists measure the size of earthquakes?
The size of an earthquake depends on the size of the fault and the amount of slip on the fault, but that’s not something scientists can simply measure with a measuring tape since faults are many kilometers deep beneath the earth’s surface. So how do they measure an earthquake? They use the seismogram recordings made on the seismographs at the surface of the earth to determine how large the earthquake was (figure 5). A short wiggly line that doesn’t wiggle very much means a small earthquake, and a long wiggly line that wiggles a lot means a large earthquake. The length of the wiggle depends on the size of the fault, and the size of the wiggle depends on the amount of slip.
The size of the earthquake is called its magnitude. There is one
magnitude for each earthquake. Scientists also talk about the
intensity of shaking from an earthquake, and this varies depending
on where you are during the earthquake.
How can scientists tell where the earthquake happened?
Seismograms come in handy for locating earthquakes too, and being able
to see the P wave and the S wave is important. You learned
how P & S waves each shake the ground in different ways as they travel
through it. P waves are also faster than S waves, and this fact is what
allows us to tell where an earthquake was. To understand how this works,
let’s compare P and S waves to lightning and thunder. Light travels
faster than sound, so during a thunderstorm you will first see the lightning
and then you will hear the thunder. If you are close to the lightning, the
thunder will boom right after the lightning, but if you are far away from the
lightning, you can count several seconds before you hear the thunder. The
further you are from the storm, the longer it will take between the lightning
and the thunder.
P waves are like the lightning, and S waves are like the thunder. The P waves travel faster and shake the ground where you are first. Then the S waves follow and shake the ground also. If you are close to the earthquake, the P and S wave will come one right after the other, but if you are far away, there will be more time between the two. By looking at the amount of time between the P and S wave on a seismogram recorded on a seismograph, scientists can tell how far away the earthquake was from that location. However, they can’t tell in what direction from the seismograph the earthquake was, only how far away it was. If they draw a circle on a map around the station where the radius of the circle is the determined distance to the earthquake, they know the earthquake lies somewhere on the circle. But where?
Scientists then use a method called triangulation to determine
exactly where the earthquake was (figure 6). It is called triangulation
because a triangle has three sides, and it takes three seismographs to
locate an earthquake. If you draw a circle on a map around three different
seismographs where the radius of each is the distance from that
station to the earthquake, the intersection of those three circles is the
epicenter!
No comments:
Post a Comment